One-Class LP Classifiers for Dissimilarity Representations
نویسندگان
چکیده
Problems in which abnormal or novel situations should be detected can be approached by describing the domain of the class of typical examples. These applications come from the areas of machine diagnostics, fault detection, illness identification, or, in principle, refer to any problem where little knowledge is available outside the typical class. In this paper, we explain why proximities are natural representations for domain descriptors and we propose a simple one-class classifier for dissimilarity representations. By the use of linear programming, an efficient one-class description can be found, based on a small number of prototype objects. This classifier can be made (1) more robust by transforming the dissimilarities and (2) cheaper to compute by using a reduced representation set. Finally, a comparison with a comparable one-class classifier by Campbell and Bennett is given.
منابع مشابه
Combining Dissimilarity-Based One-Class Classifiers
We address a one-class classification (OCC) problem aiming at detection of objects that come from a pre-defined target class. Since the non-target class is ill-defined, an effective set of features discriminating between the targets and non-targets is hard to obtain. Alternatively, when raw data are available, dissimilarity representations describing an object by its dissimilarities to a set of...
متن کاملEnsembles of Proximity-Based One-Class Classifiers for Author Verification Notebook for PAN at CLEF 2014
We use ensembles of proximity based one-class classifiers for authorship verification task. The one-class classifiers compare, for each document of the known authorship, the dissimilarity between this document and the most dissimilar other document of this authorship to the dissimilarity between this document and the questioned document. As the dissimilarity measure between documents we use Com...
متن کاملOn Combining Dissimilarity Representations
For learning purposes, representations of real world objects can be built by using the concept of dissimilarity (distance). In such a case, an object is characterized in a relative way, i.e. by its dissimilarities to a set of the selected prototypes. Such dissimilarity representations are found to be more practical for some pattern recognition problems. When experts cannot decide for a single d...
متن کاملIs combining useful for dissimilarity representations ?
For learning purposes, representations of real world objects can be built by using the concept of dissimilarity. In such a case, an object is characterized in a relative way, i.e. by its dissimilarities to a set of the selected prototypes. Such dissimilarity representations are found to be more practical for some pattern recognition problems. When experts cannot decide for a single dissimilarit...
متن کاملOn using prototype reduction schemes to optimize dissimilarity-based classification
The aim of this paper is to present a strategy by which a new philosophy for pattern classification, namely that pertaining to dissimilaritybased classifiers (DBCs), can be efficiently implemented. This methodology, proposed by Duin and his co-authors (see Refs. [Experiments with a featureless approach to pattern recognition, Pattern Recognition Lett. 18 (1997) 1159–1166; Relational discriminan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002